Home
Automated Carrier Landing Of An Unmanned Combat Aerial Vehicle Using Dynamic Inversion by Nicholas A Denison, Paperback | Indigo Chapters
Loading Inventory...
Automated Carrier Landing Of An Unmanned Combat Aerial Vehicle Using Dynamic Inversion by Nicholas A Denison, Paperback | Indigo Chapters
From Nicholas A Denison
Current price: $60.51
From Nicholas A Denison
Automated Carrier Landing Of An Unmanned Combat Aerial Vehicle Using Dynamic Inversion by Nicholas A Denison, Paperback | Indigo Chapters
Current price: $60.51
Loading Inventory...
Size: 0.26 x 9.69 x 0.51
*Product information may vary - to confirm product availability, pricing, shipping and return information please contact Coles
Dynamic Inversion (DI) is a powerful nonlinear control technique which has been applied to several modern flight control systems. This research utilized concepts of DI in order to develop a controller to land an Unmanned Combat Aerial Vehicle (UCAV) on an aircraft carrier. The Joint Unmanned Combat Air System (J-UCAS) Equivalent Model was used as the test aircraft. An inner-loop DI controller was developed to control the pitch, roll, and yaw rate dynamics of the aircraft, while an outer-loop DI controller was developed to provide flight path commands to the inner-loop. The controller design and simulation were conducted in the MATLABR-/Simulink R- environment. Simulations were conducted for various starting positions near the carrier and for varying wind, wind turbulence, and sea state conditions. In the absence of wind and sea state turbulence, the controller performed well. After adding wind and sea state turbulence, the controller performance was degraded. Future work in this area should include a more robust disturbance rejection technique to compensate for wind turbulence effects and a method of carrier motion prediction to compensate for sea state effects. | Automated Carrier Landing Of An Unmanned Combat Aerial Vehicle Using Dynamic Inversion by Nicholas A Denison, Paperback | Indigo Chapters